

Physics Protential of a Super Tau-Charm Facility (STCF)

SnowMass RF Townhall N

Haiping Peng penghp@ustc.edu.cn

University of Science and Technology China (USTC)
State Key Laboratory of Particle Detection and
Electronics
2020.10.02

SM & QCD

- ☐ The asymptotic freedom of QCD in high energy region is precisely test
- □ But need more experimental inputs in the low energy region, color confinement
- \Box τ Lepton and charmed quark provide excellent platform to study the QCD

QM & Spectroscopy () 中国神学技术大学 University of Science and Technology of China

Quark Model (QM) successfully describes the

Convention ructure of sub-atom al hadrons

dibaryon

pentaquark

glueball

baryon

diquark + di-antiquark

dimeson molecule

 $q\, ar q\, g$ hybrid

In last two decades, a series of new states (Tetraquark, Pentaquarks) are found,

however, their internal compositions are not identified yet:

- □ Main reason : imperfect on the perturbative QCD
- Incorporating theory with experimental observation, to improve power of prediction

Comprehensively establish the hadron spectrum and intensively study the exotic hadrons properties experimentally are 3 essential!

Broad Physics at τ-c energy region

5-7GeV, Blank in e^+e^- directly Opportunity

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- fD and fDs
- D0-D0 mixing
- Charm baryons

Unique features

- ☐ Transition region between QCD and pQCD
- ☐ Rich of resonance and exotics
- ☐ Threshold characteristics, Quantum Correlation...

4

T-C Physics at China (**) 中国神学技术大学 University of Science and Technology of China

30 years history, leading role in tau-charm and

Challenge of BEPCII/BESIII:

- □ Limited by length of storage ring, no large space and potential for the upgrade.
- □ Physics study limited by the Statistics (luminosity), CME
- □ Competition from Belle II and LHCb

BEPCII/BESII Will end her mission in 5-10 years, STCF is a

 10^{35} cm⁻²s⁻¹)?

STCF at China

- □ Central mass energy : 2-7 GeV (BEPCII 2-4.7 GeV)
- □ Peaking Luminosity : > 0.5×10^{35} cm⁻² s⁻¹ at 4 GeV (two orders of BEPCII)
- □ Potential to increase luminosity and realize beam polarization

Deliver at least

1 ab⁻¹/year data

Charmonium(-like) Spectroscopy

- □ Very activity and large progress in past decades, a new territory for exotic hadron
- ☐ Remarkable developments: the fail of hadron models to anticipate the rich charmonium spectrum of hidden-charm states

Charmonium(-Like) Production

 \square Prominently produced in the e^+e^- collision and decay,

☐ STCF : XYZ-Meson

factory

			1 1	
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10^{10}	10 ⁹	10 ⁹	5×10^{6}

Expected event number per year at

- □ Opportunities : STCF
 - Precision Argand plot analysis
 - Precise mass and width measurements
 - Rare decays and new states searching

Searching for 1—Hybrid (University of Science and Technology of China

- □ 1⁻⁻ Hybrid may produce directly in e⁺e⁻e⁺e⁻ collision, and radiative decay to spin-zero charmonium states [in Hybrid, cc in spin-singlet, LQCD by Dudek'09]
 - Assume $\sigma(e^+e^- \to H_{ccq}) \sim O(10-100)$ pb [???]
 - $B(H_{ccq} \rightarrow \gamma \eta_c) \sim 2 \times B(H_{ccq} \rightarrow \gamma \chi_{c0}) \sim 4 \times 10^{-4}$
- □ Scan between 4-5 GeV for 1 year (1 ab⁻¹), search for exotic structure in process e^+e^- → $\gamma\eta_c$ and $\gamma\chi_{c0}$
 - Assume εB ~ 10% for $\gamma \eta_c$ and $\gamma \chi_{c0}$ decay to γ +hadrons
- With 100 energy points between 4-5 GeV
 - $N^{obs}(\gamma \eta_c) = O(4-40)$ events/point/year at peak
 - $N^{obs}(\gamma \chi_{c0})=O(2-20)$ events/point/year at peak

Competition with Belle-II () 中国神学技术大学

- \square τ ractory: scan in 4-5 GeV, 10 MeV/step, every point have 10 fb⁻¹/year, 5 time of Belle II for 50 ab⁻¹ data
- \Box τ -C factory have higher efficiency and low background than **B** Factory

Light hadrons

- Glueballs, hybrids, exotic states searching are greatly motivated in light hadrons scope, but challenged obviously.
- ☐ Great progress on Lattie QCD, more experimental inputs are necessary

- ☐ Charmonium decays is an ideal hunting ground
 - "Glue-rich"process
 - Clean and high statistics sample
 - I (J^{pc}) filter in strong decays

STCF: ψ factory

3T J/ψ or 500B ψ'/year

- ☐ Systematic study of glueball, hybrid and conventional spectroscopy
 - Precision multi-variable analysis
 - Comprehensive measurement of all possible decay modes, e.g. $J/\psi{\to}\gamma\eta\eta'$

1T

J/ψ

- ...
- \square Light hadrons η/η' factory : important role in low energy QCD

$\mathcal{B}(\times 10^{-4})$ [9]	η/η' events
52.1 ± 1.7	5.21×10^9
11.08 ± 0.27	1.1×10^{9}
7.4 ± 0.8	7.4×10^{8}
4.6 ± 0.5	4.6×10^{8}
	52.1 ± 1.7 11.08 ± 0.27 7.4 ± 0.8

- ☐ Baryon spectroscopy
- ☐ Hyperon decays : CP asymmetry violation...

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF		
$J/\psi o \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}		
$\psi(2S) \to \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}		
$J/\psi \to \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}		
$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}		
$J/\psi o \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}		
$\psi(2S) \to \Xi^-\bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}		

3T

J/ψ

Vector Mesons

- \square J^{PC}=1⁻⁻ vectors can be produced directly
- \square PDG: ρ(2000), ρ(2270), ω(1900), ω(2205), ω(2290), wω(2330). more need
- \square \sqrt{s} \in [2.0, 3.0]GeV: study of ρ^* , ω^* and ϕ^*
 - Unobserved ss mesons
 - Many"omitted"from summary table or "further states"in PDG2020

$\rho(2150)$ and $\phi(2170)$

 \square $\rho(2150)$: inconsistent between e+e-, $\overline{p}p$, s-channel $\overline{N}N$ and p-p experiments

 \square ϕ (2170): candidate for $s\bar{s}g$ hybrid, 2^3D_1 or 3^3S_1 $s\bar{s}$, tetraquark, molecular state $\Lambda\bar{\Lambda}$, $\phi f_0(980)$ resonance with FSI, three body system ϕ KK

STCF:

Mass (MeV/c2)

- \blacksquare Based on isospin and OZI rule, precisely measure resonances parameters, and decay strength, e.g. $\phi(2170)$ @ $\phi\eta'$
- \Box Comprehensive study of decays : e.g. $e^+e^- \rightarrow KK\pi\pi$, $KK\pi$
- Complicate intermediate states, large sample and PWA are necessary

Charmed hadrons

Charmed hadron Spectroscopy provide an ideal role in studying the dynamics of the light

- only 1S and 1P states are found, almost of all others are missing
- Many excited states are reported in experiment, but still controversial on the existence or their natures : $D_{sJ}^*(2632)$, $D_{s0}^*(2317)$, $D_{s1}(2460)$
- Baryons:
 - J^p s have not measured yet, except for the Λ_c^+
 - The spectroscopy need fill
- STCF: CME up to 7GeV, Clean, threshold production, e.g. $e^+e^-{\rightarrow}D^{(*)}D^{**}(\pi)$, $\Lambda_C\Lambda_C^*(\pi)$, ...

Activities and Progress 中国神学技术大学

Form the organization, build up

5-7 years

Preliminary CDR

Three volumes (Physics, Accelerator and Detector), will released (Physics/Detector) before the end of this year

中国科学技术大学 International Collaboration University of Science and Technology of China

SCT at Novosibirsk, Russia **Budker Institute of Nuclear**

□ Carry out joint eff ioint

meeting month?

Joint w

201

2019

2020

- □ Others ___rorts:
 - FTOF for PID (LAL)
 - uRwell for inner tracking (Frascati)
 - Accelerator Lattice (KEK)

Detector

Summary

- \square Physics at τ -c energy region is abundant, and is unique for the hadron spectroscopy and test QCD
- \Box A super τ -c facility (STCF) is nature extension of BEPCII/BESIII and a viable option for post-BEPCII era in China
- ☐ Great progress has achieved for feasibility study of STCF
- ☐ Strategy & Plan
 - Intend to have a CDR and TDR in five years
 - · Construction site: Currently open

Tentative Schedule (Diniversity of Science and Technology of China

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031- 2040	2041- 2042
Form															
International															
Collaboration															
Conception															
Design Report															
(CDR)															
Technical															
Design Report															
(TDR)															
Construction															
Commissioning															
Upgrade															

Funding Support


```
USTC: Initial funds
15M CNY (2018-2020)
```

CAS: Program for cultivation of international

big science program

6M CNY (2021-2025)

NSFC: Key technology R&D

3 Key programs + several general

programs ~10 M CNY

Seeking for the funding support on R&D from MOST, CAS and local government

Budget Estimation

R&D: 250M CNY, Construction: 4 B CNY (Very Rough)

单位: 亿元				
eLinac	4.0+1.0 (阻尼环)			
Electron ring	7.0			
Positron ring	7.0			
束线	1.2			
实验谱仪	8.0			
低温	1.0			
配套设施	1.8			
装置土建	6.0			
不可预见	3.0			
合计	40			

Candidate Site: Hefei

One of three integrated national science centers, which will play important role in 'Megascience' of China in near future

Hefei Integrated National Science Center

- □ Pay a lot of attention on accelerator facilities
- ☐ Hefei Advanced light source is under design
- □ STCF is listed in **future** plan

- □ University of Science and Technology of China (USTC)
- □ National Synchrotron Radiation Lab and Hefei Light Source, operated by USTC
- ☐ The only National Lab operated by University in China. (Totally Four officially approved National Labs in China)

Candidate Site: Canton () 中国神学技术大学 University of Science and Technology of China

Institute of Modern Physics, CAS, proposed building HIAF-EicC

Accelerator based project in China

Consensus in HEP community in China (about accelerator based particle physics project)
Web of Division of High energy physics, Chinese Physics
Society http://www.ihep.cas.cn/xh/gnwlxh/zxdt/

CEPC and HIEPA (STCF)
are the viable
options ...
Carry out the work in
both high energy
frontier and intensive
luminosity frontier

中国物理学会高能物理分 第十届委员会常务委员会第三次

[2019] 002

Unanimity to consent to support R&D of STCF, ...it is necessary to carry out the R&D

时 间: 2019年3月1日 地 点: 高能所主楼 A418 会议室

地 点: 局能所王稜 A418 会议至

主持人: 王贻芳

二、 讨论报告框架中第四部分内容: 我国牵头组织国际大利

经过与会人员充分讨论,得出如下结论:

1. 大家一致同意 CEPC 项目最符合以我为主的 字计划和大科学工程 战略规划条件,这也符合中国高能物理长期 所形成的发展规划,即 CEPC 是我国未来高能加速器物理发展的首词 应该积极争取使其成为我国 发起的国际大科学工程之一;基于以上这一念。本次国际大科学的培育推选 CEPC。

2. 大家一致同意支持 SCTF 的预研, Ass SCTF 的建设规模要比 CEPC 小很多。但是作为我国高能实验物理在高完度前沿的布局, 积极开展项目预研是很有必要的, 特别是该项目应该和 BEPCII 的升级改造相结合, 充分挖掘其丰富的物理内容。建议由科大和国科大联合申请科学院先导 B, 或申请科技部的重点研发计划来支持 STCF 的预研。